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Abstract 

The ability to shorten development cycles has made 
Field-Programmable Gate Arrays (FPGAs) an attrac- 
tive alternative to Standard Cells an,d Mask Pro- 
grammed Gate Arrays for the realization of ASICs. 
One important class of FPGAs are those that use 
lookup tables (L UTs) to implement combinational 
logic. The ability of a K-input LUT to implement any 
Boolean function of Ii- variables di$eren,tiates the syn- 
thesis of LUT circuits from synthesis for conventional 
ASIC technologies. The major difference occurs dur- 
ing the technology mapping phase of logic synthesis. 
For values of I( greater th,an 3, th.e large number of 
functions that can be implemented by a K-input LUT 
makes it impractical to use conventional library-based 
technology mapping. However, the completeness of 
the set of functions th.at can be implemented by a LlJT 
eliminates the need for a library of separate junctions. 
In addition, this completeness can be leveraged to op- 
timize the final circuit. 

1 Introduction 

Field-Programmable Gate Arrays (FPGAs) now 
nrovide an alternative to Standard Cells and Mask Pro- 
grammed Gate Arrays for the realization of ASICs. An 
FPGA consists of an array of logic blocks that imple- 
ment combinational and sequential functions, a,nd a 
user-programmable routing network that provides con- 
nections between the logic blocks. User-programability 
allows for rapid and inexpensive prototype develop- 
ment [l]. This tutorial discusses combinational logic 
synthesis for FPGAs that use lookup tables (LUTs) 
to implement combinational logic, and focuses on is- 
sues that differentiate LUT synthesis from conven- 
tional logic synthesis. 

A K-input lookup table is a digital memory that 
can implement any Boolean function of K variables. 
The I< inputs are used to address a 2K by l-bit digi- 
tal memory that stores the truth table of t,he Boolean 
function. For example, Figure la illustrates the truth 
table for the function 2 = ab + zc, and Figure lb il- 
lustrates the st,ructure of a 3-input LUT implementing 
this function. The truth table is stored in an 8 by l-bit, 
memory, and an 8 to 1 multiplexer, controlled by the 
variables a, b, and c, selects the output value z. 

The goal of combinational logic synthesis is to pro- 
duce an optimized circuit implementing a given combi- 
national function. The original function can be repre- 
sented by a Directed Acyclic Graph (DAG) where each 

node represents a local function of the global functions 
represented by its immediate fanin nodes. For exam- 
ple, in the DAG illustrated in Figure 2a the local func- 
tion at the node z is z = wxy, and the global function 
is z = ((abc) + (def))(g + h)(i + j). 

The netlist describing a circuit of LUTs can be rep- 
resented by a similar DAG. In this case, each node rep- 
resents a smgle LUT and the node’s local function spec- 
ifies the function implemented by the LUT. Figure 2b 
illustrates a circuit of 5-input LUTs implementing the 
function illustrated in Figure 2a. The dotted bound- 
aries in Figure 2b indicate the local function imple- 
mented by each LUT. The local function implemented 
by the LUT t is z = (u + (def))t. Unless stated other- 
wise, all examples in the remainder of this tutorial will 
use 5-input LUTs. 

Combinational logic synthesis can be conceptually 
divided into two phases; technology-independent logic 
optimization, and technology mapping [2]. Logic 
optimization restructures the original network, without 
changing the function of its primary outputs, and tech- 
nology mapping implements the optimized network us- 
ing the circuit elements available in the given ASIC 
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Figure 1: A LUT Implementing z = ub + zc 
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b) Circuit of S-input LUTs 

Figure 2: Network a.nd Circuit 

technology. 
The modifications performed by logic optimization 

typically include redundancy removal and common 
sub-expression elimination. The intention is to im- 
prove the final circuit by simplifying the underlying 
network. For example, consider the network shown 
in Figure 3a. The common sub-expression e + f can 
be factored out of the functions x and g leading to the 
simplified network covered by the circuit shown in Fig- 
ure 3b. Conventional techniques for logic optimization 
can be effective for LUT circuits particularly at a level 
of granularity where factors ha.ve more t,han AV inputs. 
These techniques have been summarized in [2] and will 
not be discussed here. 

Technology mapping selects sub-networks of the op- 
timized network to be implemented by the available 
circuit elements. In the case of LUT-based FPGAs, 
any sub-network wit.11 at most K inputs can be im- 
plemented by a K-input LUT. The final circuit must 
include a LUT implementing each of the primary out- 
puts and all of the LUT input,s t,hat a.re not primary 
inputs. 

The optimization goa. for the synthesis of LUT cir- 
cuits is typically the minimiza.tion of the t.ot.al munber 
of LUTs, t,he number of ferlels of LUTs, or bot,h. Min- 
imizing the number of LUTs in the circuit increases 
the size of designs that can fit into the fixed number 
of LUTs availa.ble in a given FPGA. The minimiza- 
tion of the number of levels of LUTs can improve the 
performance of the circuit by reducing the number of 
logic block delays and programmable routing delays 
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Figure 3: Common Sub-Expression Elimination 

on the longest path. To illustrate the issues that dif- 
ferentiate LUT synthesis from conventional logic syn- 
thesis, this tutorial will focus on the minimization of 
the total number of LUTs in the final circuit. The fol- 
lowing section discusses the limitations of conventional 
library-based synthesis when applied to LUT circuits, 
and Section 3 discusses approaches to logic synthesis 
that deal specifica.lly with LUT circuits. 

2 Library-Based Synthesis 

Standard Cells and Mask Programmed Gate Ar- 
rays both implement. combinational functions using a 
limited set of simple gates. The most successful ap- 
proach t,o synthesis for these ASIC technologies has 
used library-based technology ma.pping [3]. This ap- 
proach traverses the network from the primary inputs 
to the primary outputs, and at each node the local 
structure of the network is m.adched against a library 
of patterns representing the set of available gates. For 
each successful match, the cost of the circuit using that 
gate is calculated from the cost of the gate, and the cost 
of t,he previously constructed circuits implementing the 
input,s to the gate. The minimum cost circuit among 
all the matches is then retained. 

The major obstacle to applying library-based tech- 
nology mapping to LUT circuits is the large number 
of different functions that a K-input LUT can imple- 
ment. The function implemented by a K-input LUT is 
determined by the values stored in its 2K memory bits. 
Since each bit ca.n independently be either 0 or 1, there 
are 2- 7K different Boolean functions of li’ variables. For 
values of li’ greater than 3 the library required to rep- 
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without with with 
I< permutations permut,ations permutations 

and inversions and inversions 
2 1G 12 4 
3 25G 80 14 
4 65536 3984 232 

Table 1: Number of Patt,erns for a K-Input LUT 

resent a K-input LUT becomes impractically large. 
The size of the libra.ry can be reduced by noting 

that some pa,tterns are equivalent after a. permutation 
of inputs [4]. The inversion of outputs or inputs, which 
is trivially accomplished with a LUT, ca.n also produce 
equivalent ‘patterns. Table 1 lists the number of differ- 
ent patterns, with and without permutations and in- 
versions, for IC = 2, 3, and 4. To match a. sub-network 
against a pattern in the reduced library it may be nec- 
essary to permute or invert the sub-network. Ha.shing 
functions have been proposed to simplify the matching 
of permuted patterns [5]! but the increased complexity 
of pattern matching limits the benefits of the reduced 
library. 

Another alternative is to use a partial library tuned 
to take advantage of the network structure likely to be 
produced by technology independent logic optimiza- 
tion [6]. The limitation of this approach is that it pre- 
cludes some opportunities for optimization of the final 
circuit. The following section discusses approaches to 
LUT synthesis that exploit the full functiona.lity of a 
K-input LUT to obtain improved result,s. 

3 LUT-Specific Synthesis 

There has been a great, deal of recent, work on lo .ic 
synthesis that deals specifically with LUT circuits. G , 
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ey to all of these approaches is t le ability 
of a K-input LUT to implement ~11 functions of Ii 
variables. This complelen.ess simplifies the ma.tching of 
a sub-network t.o a LUT. To determine if a sub-network 
matches a. K-input, LUT it is not, necessary t,o matc!l 
the sub-network a.gainst, a. library of sepamte palterns, 
as described in the preceding sect,ion. It is sufficient 
to count the number of inputs t’o the sub-network, and 
verify that the number of inputs does not exceed the 
constraint K. 

Technology mapping optimizes the final circuit by 
selecting which sub-networks are covered by LUTs. If 
the original network includes nodes with more than K 
inputs, referred to as infeasible nodes., it may not be 
possible to find a circuit of LUTs covermg the network. 
In many mapping algorithms, t.o ensure that a circuit 
covering the network exists, each infeasible node is de- 
composed into a set of feasible nodes, each wit,h at most 
I< inputs. In addition, the decomposition of bot,h fea- 
sible and infeasible nodes present,s an opportunity to 
optimize the final circuit. 

The next section discusses the decomposition of in- 
feasible nodes, Section 3.2 discusses how decomposition 
and covering can be combined to improve the final cir- 
cuit, and Section 3.3 describes how covering can exploit 

fanout nodes in the original network. 

3.1 Decomposition of Infeasible Nodes 

The general stra.tegy for the decomposition of infea- 
sible nodes is to decompose each infeasible node into 
sub-functi’ons that use fewer inputs than the original 
infeasible node. Any sub-function that uses no more 
t,han K inputs is feasible and is decomposed no further. 
Any sub-function that has more tha.t Ii’ inputs is recur- 
sively decomposed. Eventually the original infeasible 
node is decomposed into a set of feasible nodes. Four 
methods tl1a.t have been proposed for the decompo- 
sition of infeasible nodes are; disjoint decomposition, 
algebraic factorization, AND-OR decomposition, and 
Shannon cofactoring. 

3.1.1 Disjoid Decomposition 

A disjoint deconlposition is based on a pa.rtition of the 
inputs to the infeasible node into two disjoint sets re- 
ferred to as the bound sef and the free set. One or more 
functions of the bound set are extracted from the in- 
feasible node, and the infeasible node is replaced by a 
function of the outputs of the extracted functions and 
the inputs in the free set. The attraction of a disjoint 
decomposition is that the number of inputs in the each 
of the t.wo sets must be less than the number of inputs 
t,o the infeasible node. 

Disjoint decompositions can be found by searching 
through all possible pa.rtitions of t,he inputs to the in- 
feasible node, alld using well known methods such as 
residues [19], t.o determine if each ea.& partition leads 
t,o a disjoint decomposition. A residue function is ob- 
t.ained by repla.cing the inputs in the free set with con- 
sta.nt values. If the set of all possible residue functions 
for a given partition consists of the constants 0 or 1, 
or a single function h of the bound variables, or its in- 
verse SE, then the partition is a disjoint decomposition, 
with one extracted function. For example, consider the 
4-input function f = ab + c&d + 7ib? + Tibz shown in 
Figure 4a, and t,he pa,rtition of its inputs into the free 
set. (0, b} a.nd the bound set {c? d}. The set of residue 
functions for this partition, shown in Figure 4b, con- 
sists of the constants 0 and 1, a.nd the function cd and 
its inverse (cd). Therefore, this partition leads to the 
disjoint, decomposition of the function f, shown in Fig- 
ure 4c. 

The number of partitions grows exponentially with 
number of inputs to the infeasible node, and the search 
for disjoint decompositions can become prohibitively 
expensive if the infeasible node has a large number of 
inputs. 

3.1.2 Algebraic Decomposition 

Algebmic factoriza.tion techniques developed for tech- 
nology independent logic opt,imization can also be used 
for the decomposition of infeasible nodes [7]. For ex- 
ample, she function CC = UC + bc + bd + ce ca.n be alge- 
bra.ica.lly factored into the fa.ctor y = a + b + e, and the 
remainder ;c = cv + bd. Since the va.riable b is nsed by 
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c) The disjoint decomposition 

Figure 4: Identifying Disjoint Decompositions 

both the factor y a.nd the remainder z this is a. not a 
disjoint decomposition. 

3.1.3 AND-OR Decomposition 

Disjoint decompositions a,nd algebraic factorization are 
not sufficient. to decompose all infeasible nodes. For ex- 
ample, the majority function z = a6 + UC + bc. has no 
disjoint decomposition. AND-OR decomposition ca,n 
be used to ensure that any infeasible node is clecom- 
posed into a set of feasible nodes. The AND 
operator is associative and commutat,ive, which I 

OR) 
a lows 

an AND (OR) node to be divided into smaller AND 
(OR) nodes using any partition of its inputs. An in- 
feasible node is represented as a sub-graph of AND 
and OR nodes, each of which is then decomposed us- 
ing AND-OR decomposition. For example, the above 
3-input majority function can be decomposed into the 
2-input functions ‘v = ab, w = ac, x = bc, y = v + w, 
and t = y+s. 

AND-OR decomposition can also be used to decom- 
pose large infea.sible nodes into infeasible nodes that 
are small enough t.o ma.ke an exhaust,ive search for dis- 
joint decompositions practical [9]. 

a) Original circuit, 4 LUTs 

b cdeg 

i . . . . . . . . . . q.“-“..-: 

b) With Shannon cofactoring, 3 LUTs 

Figure 5: Shannon Cofactoring 

3.1.4 Shannon Cofactoring 

Another form of decomposition that. will always suc- 
cessfully decompose an infeasible node is Shannon co- 
factoring [‘ZO]. A n infeasible function of n. variables, 
f(z1 . . . ~j . x,,), is decomposed into the three func- 
tions fX, = f(rl . . l...z,), f- = f(Xl...O...X,) 
and f = zjfE, +qfq. The func?on f now depends on 
the three inputs ~j, frj, and fq, and can therefore be 
implemented by a single K-input LUT for Ir’ >_ 3. The 
functions fZ,, and fq, each depend on at most n - 1 
variables. If n - 1 equals I< then the completeness of a 
K-input L17T ensures that these functions can be im- 
plemented by a single LUT. Otherwise, the functions 
f Q3 ’ and fq, ca,n be recursively decomposed. For ex- 
ample, t,he G input function f = a.bcd+%eg+Z~eg can 
be covered by the 4 LUT circuit shown in Figure 5a. 
This function can be cofactored ab_out the vqiable_a to 
produce the cofact,ors fa = bcd+~@, fx = beg+Efi, 
and the 3 LUT circuit shown in Figure 5b. 

3.2 Decomposition and Covering 

An important observation is that the decomposition 
of feasible nodes, as well as infeasible nodes, can lead 
to a superior circuit. For example, in the circuit shown 
in Figure 6a the AND and OR nodes in the underlying 
network are all feasible, and four 5-input LUTs are 
needed to cover the network. In Figure Gb the original 
4-input OR node has been decomposed into a 2-input 
and a S-input OR node a.nd only 2 LUTs are needed 
to cover the network. 

The AND-OR decomposition of feasible, and infea- 

43 



4 Original 4-input, OR node, 4 LUTs 

b) OR node decomposed, 3 LUTs 

Figure G: Decomposition of a Feasible Node 

sible nodes, can be combined with a covering algorithm 
similar to the library-based approach described in Sec- 
tion 2 to optimize the final circuit [lo]. The original 
network consists of AND and OR nodes, and is tra- 
versed from the primary inputs to the primary outputs. 
A circuit implementing each node is constructed from 
the circuits implementing its immediate fanin nodes. 
This circuit is optimized to minimize the total number 
of LUTs, and to minimize the number of inputs used by 
its root LUT. This increases the number of unused in- 
puts available at the root, LUT, and these may reduce 
the number of LUTs required to implement a subse- 
quent node. 

At each node, the root LUTs of the fanin circuits 
are referred to as the funin. L UTs. For example, Figure 
7a illustrates the fanin LUTs for the node z. In this 
example, the LUTs preceding the fanin LUTs are not 
shown, and the functions implemented by the fanin 
LUTs are simple AND gates. In general, the fanin 
LUTs can implement more complex functions. 

At each node’, a tree of LUTs replacing the fanin 
LUTs and implementing a decomposition of the node 
being mapped is constructed in two st,eps. The first 
step selects decompositions, as shown in Figure 7b, 
that allow several fanin LUTs to be packed together 
into a single LUT. The second step comiects these 
LUTs to form the circuit implemeuting the node being 
mapped, as shown in Figure 7c. The following sections 
describe these two steps. 

3.2.1 Decomposition Using Bin Packing 

The objective of the first step is the minimization of 
the number of LUTs into which the fanin LUTs are 
packed. To determine if a group of fanin LUTs can 
be packed into a single LUT it is sufficient to count 
the total number of inputs used by this group. The 
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c) The final circuit 

Figure 7: Decomposition and Covering 

completeness of K-input LUTs ensures that any group 
of fanin LUTs that together have no more than K in- 
puts can be implement,ed by a single LUT. This allows 
the minimization of the number of packed LUTs to be 
rest.ated and solved as a bin packing problem. 

The goal of the bin packing problem is to find the 
minimum number of fixed capacity bins into which a 
given set of arbitrary sized boxes can be packed. In 
this case, the boxes are the fanin LUTs and the bins 
are the LUTs into which they are packed. The size 
of each box is the number of inputs used by the fanin 
LUT and the capacity of each bin is K. In Figure 7a 
the boxes have sizes 3, 2, 2, 2, and 2. 

Bin packing is a well known combinational optimiza- 
t,ion problem, and there exists several effective algo- 
rithms for its solution [21]. In particular, the First Fit 
Decreasing (FFD) algorithm is optimal for boxes and 
bins with integer sizes less than equal to 6 [22]. The 
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FFD algorithm begins with an empty list of bins. The 
boxes are sorted by size and then each box, beginning 
with the largest, is packed into the first bin in ‘the list 
into which it fits. If the box does not fit int.o any bin 
then it is packed into a new bin added to t,he end of 
the list. In Figure 7b the FFD algorit.hm has packed 
the fanin LUTs from Figure 7a into LUTs having filled 
capacities of 5, 4, and 2. Note that packing boxes into 
bins implies decomposition of the node being mapped. 

3.2.2 Completing the Circuit 

After the fanin LUTs have been packed into the bins, 
the final circuit, shown in Figure 7c, is formed by sort- 
ing the bins by filled capacity and then connecting the 
output of each bin to an unused input, of one of the 
following bins. If no unused inputs are available then 
a new LUT is added to the root of circuit. Connect- 
ing the bins alters the decomposition of the node being 
mapped, however, the completeness of a K-input LUT 
ensures that each sub-function can be implemented by 
a single LUT. In addition to minimizing the number 
of LUTs in the circuit, this approach minimizes the 
number of inputs used a.t the root LUT of the circuit. 
This is an important consideration, since the root LUT 
becomes a box when the following node is mapped. 
Smaller boxes ca.n reduce the number of bins required 
by the bin packing step and lead to a superior circuit. 

3.2.3 Optimality 

If the original network is a fallout-free t,ree then t,he 
above approach constructs the circuit containing t,he 
minimum number of K-input LUTs for values of Ii’ 5 
5. A similar approach can map fallout-free trees into 
the the minimum depth circuit for values of I< 5 G [14]. 
The mapping of trees can be used as part of a divide 
and conquer strategy to map arbitrary networks by 
partitioning the network at, fa.nout nodes int,o a forest 
of trees that are then mapped separately. 

3.3 Covering of Fanout Nodes 

While separate trees can be mapped effectively using 
the approach described in the previous section, general 
networks containing fanout nodes present additional 
challenges and opportunities. The following two sec- 
tions describe the opportunities presented by reconver- 
gent paths and the replication of logic at fanout nodes, 
and Section 3.3.3 describes an a.pproach to LUT tech- 
nology mapping that takes adva.ntage of these oppor- 
tunities. 

3.3.1 Covering Reconvergent Paths 

In some networks sepa.rate paths tha.t originate a.t a 
fanout node reconverge at a subsequent node. For ex- 
ample, in Figure Sa, there are a pair of reconvergent 
paths origina.ting at the node a and termina.ting at the 
node z. If the reconvergent paths are realized by sepa- 
rate LUTs, as in Figure 8a, then each path requires one 
LUT input connected to the fanout node. If the recon- 
vergent paths are contained within a sub-network that 

a) Reconvergent paths covered separately, 3 LUTs 

b) Reconvergent paths covered together, 2 LUTs 

Figure 8: Covering Reconvergent Paths 

has at most K distinct inputs, as shown in Figure 8b, 
then the completeness of a K-input LUT ensures that 
t,he paths can be covered by a single LUT with only 
one input connected to the fanout. node. The reduc- 
tion in the number of inputs connected to the fanout 
node can lead to a superior circuit, as shown in Figure 
8b. However, it is not always advantageous to cover 
reconvergent. paths wit,11 a single LUT. For example, in 
the circuit shown in Figure 9a the reconvergent paths 
originating from the node a are realized within a single 
LUT, and 4 LUTs cover the network. This network can 
be covered with a circuit of 3 LUTs, as shown in Fig- 
ure 9b if the reconvergent paths are covered separately. 
The challenge for LUT synthesis is to determine when 
reconvergent paths should be covered by a single LUT. 

3.3.2 Replication of Logic at Fauout Nodes 

The replication of logic at fanout nodes a,lso presents 
an opportunity t,o improve the final circuit. For ex- 
ample, in t,he 3 LUT circuit shown in Figure 10a the 
fanout node L is explicitly implemented as the out- 
put of a LUT. Replicat,ing t,he function of this LUT 
lea.ds to the 2 LUT circuit shown in Figure lob. The 
sub-circuits implementing the nodes y and z in Figure 
10a have sufficient unused capacity to include a copy 
of the 3-input AND node, and the completeness of a 
K-input LUT ensures that the functions incorporating 
the copies can be realized. Replication of logic is not 
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a) Reconvergent paths covered together, 4 LTJTs 

b) Reconvergent paths covered separately, 3 LUTs 

Figure 9: Covering Reconvergent Paths 

always beneficial and LUT synthesis must determine 
at which fanout nodes replica.tion should occur. 

3.3.3 Covering using Edge Visibility 4 Conclusion 
In the fina. circuit produced by technology ma.pping 
every edge of the original net,work is either driven as 
the output of a LUT or implemented within a LUT. 
The covering of reconvergent paths and the replication 
of logic at fanout nodes can be described by the as- 
signment of edge visibility labels [12]. A visible edge 
is driven by the output of a LUT, whereas an itlvisi- 

ble edge is implemented within a LUT. For example, 
the circuit shown in Figure llb covers by the network 
shown in Figure lla. In this circuit the invisible edges 
(2, y) and (to, y) are represent,ed by curved lines. This 
assignment of edge labels implies the replicat,ion of the 
3-input OR node, a.nd leads t.o a circuit cont,aining 3 
LUTs. In Figure llc the edges (2, z) a.nd (9, z) are in- 
visible, and the reconvergent pa.ths origina.ting at, t#he 
node w are realized within a single LUT, leading to a 
circuit containing 2 LUTs. 

The key feature that differentiates the synthesis of 
LUT circuits from synthesis for conventional ASIC 
technologies is the completeness of the set of functions 
that can be realized by a K-input LUT. This complete- 
ness simplifies technology mapping by eliminating the 
need for a library of separate functions. In addition, 
completeness presents opportunities to select decom- 
positions that improve the final circuit. 

After the decomposition of infeasible nodes, the as- 
signment of edge labels can be optimized using a di- 
vide and conquer strategy. The network is partitioned 
into sub-networks, and within each sub-network, the 

To date research in LUT synthesis has focused pri- 
marily on technology mapping. The challenge for the 
future is to exploit the completeness of LUTs to im- 
prove other phases of FPGA synthesis. In particu- 
lar, delay penalties incurred by programmable routing 
in FPGAs, provide motivation for the investigation of 
the combined eff’ect of logic synthesis, placement, and 
routing on circuit performance. Another important is- 
sue is t,he tradeoff between optimization to fit a design 
into the fixed logic and routing resources available on 
a given FPGA, and optimization to improve the per- 
formance of the final circuit. 

Y 2 

a) Without replication, 3 LUTs 

Y z 

b) With replication, 2 LUTs 

Figure :lO: Replication of Logic at a Fanout Node 

optimal assignment is found by exhaustively search- 
ing all possible combinations of edge labels. If the 
sub-network containing m edges, t,here are 2”’ different 
combinations. For each combination a circuit is formed 
by combining the source and destination nodes of invis- 
ible edges into one LUT. If any of the resulting LUTs 
have more than K inputs, then the combination of edge 
labels is re.jected. Otherwise, the combination resulting 
in the circuit containing the fewest LUTs is retained. 
The computational cost of the search is controlled by 
the limit on the number of edges in the sub-network. 
In addition, the search can be pruned whenever a com- 
bination leading to a LUT with more than IZ inputs is 
rejected. 
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Figure 11: Covering Using Edge Visibility 
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