
A Tutorial on Logic Synthesis for Lookup-Table Based FPGAs

Robert J. Francis

Department of Electrical Engineering, University of Toronto

Abstract

The ability to shorten development cycles has made
Field-Programmable Gate Arrays (FPGAs) an attrac-
tive alternative to Standard Cells an,d Mask Pro-
grammed Gate Arrays for the realization of ASICs.
One important class of FPGAs are those that use
lookup tables (L UTs) to implement combinational
logic. The ability of a K-input LUT to implement any
Boolean function of Ii- variables di$eren,tiates the syn-
thesis of LUT circuits from synthesis for conventional
ASIC technologies. The major difference occurs dur-
ing the technology mapping phase of logic synthesis.
For values of I(greater th,an 3, th.e large number of
functions that can be implemented by a K-input LUT
makes it impractical to use conventional library-based
technology mapping. However, the completeness of
the set of functions th.at can be implemented by a LlJT
eliminates the need for a library of separate junctions.
In addition, this completeness can be leveraged to op-
timize the final circuit.

1 Introduction

Field-Programmable Gate Arrays (FPGAs) now
nrovide an alternative to Standard Cells and Mask Pro-
grammed Gate Arrays for the realization of ASICs. An
FPGA consists of an array of logic blocks that imple-
ment combinational and sequential functions, a,nd a
user-programmable routing network that provides con-
nections between the logic blocks. User-programability
allows for rapid and inexpensive prototype develop-
ment [l]. This tutorial discusses combinational logic
synthesis for FPGAs that use lookup tables (LUTs)
to implement combinational logic, and focuses on is-
sues that differentiate LUT synthesis from conven-
tional logic synthesis.

A K-input lookup table is a digital memory that
can implement any Boolean function of K variables.
The I< inputs are used to address a 2K by l-bit digi-
tal memory that stores the truth table of t,he Boolean
function. For example, Figure la illustrates the truth
table for the function 2 = ab + zc, and Figure lb il-
lustrates the st,ructure of a 3-input LUT implementing
this function. The truth table is stored in an 8 by l-bit,
memory, and an 8 to 1 multiplexer, controlled by the
variables a, b, and c, selects the output value z.

The goal of combinational logic synthesis is to pro-
duce an optimized circuit implementing a given combi-
national function. The original function can be repre-
sented by a Directed Acyclic Graph (DAG) where each

node represents a local function of the global functions
represented by its immediate fanin nodes. For exam-
ple, in the DAG illustrated in Figure 2a the local func-
tion at the node z is z = wxy, and the global function
is z = ((abc) + (def))(g + h)(i + j).

The netlist describing a circuit of LUTs can be rep-
resented by a similar DAG. In this case, each node rep-
resents a smgle LUT and the node’s local function spec-
ifies the function implemented by the LUT. Figure 2b
illustrates a circuit of 5-input LUTs implementing the
function illustrated in Figure 2a. The dotted bound-
aries in Figure 2b indicate the local function imple-
mented by each LUT. The local function implemented
by the LUT t is z = (u + (def))t. Unless stated other-
wise, all examples in the remainder of this tutorial will
use 5-input LUTs.

Combinational logic synthesis can be conceptually
divided into two phases; technology-independent logic
optimization, and technology mapping [2]. Logic
optimization restructures the original network, without
changing the function of its primary outputs, and tech-
nology mapping implements the optimized network us-
ing the circuit elements available in the given ASIC

x = ab + bc
0

a) Truth Table

abc

S lo 1 multiDlexer

i “....“........” “._........I_I............. /.. “.....”“. I.._..._

x

b) 3-Input LUT

Figure 1: A LUT Implementing z = ub + zc

40
O-8186-3010-8/92 $03.00 0 1992 IEEE

abc def gh

1

” ” x

Y

w

z

a) Boolean Network

abc

de f
‘

”

i j

”

Y

g” i j

b) Circuit of S-input LUTs

Figure 2: Network a.nd Circuit

technology.
The modifications performed by logic optimization

typically include redundancy removal and common
sub-expression elimination. The intention is to im-
prove the final circuit by simplifying the underlying
network. For example, consider the network shown
in Figure 3a. The common sub-expression e + f can
be factored out of the functions x and g leading to the
simplified network covered by the circuit shown in Fig-
ure 3b. Conventional techniques for logic optimization
can be effective for LUT circuits particularly at a level
of granularity where factors ha.ve more t,han AV inputs.
These techniques have been summarized in [2] and will
not be discussed here.

Technology mapping selects sub-networks of the op-
timized network to be implemented by the available
circuit elements. In the case of LUT-based FPGAs,
any sub-network wit.11 at most K inputs can be im-
plemented by a K-input LUT. The final circuit must
include a LUT implementing each of the primary out-
puts and all of the LUT input,s t,hat a.re not primary
inputs.

The optimization goa. for the synthesis of LUT cir-
cuits is typically the minimiza.tion of the t.ot.al munber
of LUTs, t,he number of ferlels of LUTs, or bot,h. Min-
imizing the number of LUTs in the circuit increases
the size of designs that can fit into the fixed number
of LUTs availa.ble in a given FPGA. The minimiza-
tion of the number of levels of LUTs can improve the
performance of the circuit by reducing the number of
logic block delays and programmable routing delays

ab , , f de df

x Y

a) Boolean Network

X

b) Circuit of 5-input LUTs

Figure 3: Common Sub-Expression Elimination

on the longest path. To illustrate the issues that dif-
ferentiate LUT synthesis from conventional logic syn-
thesis, this tutorial will focus on the minimization of
the total number of LUTs in the final circuit. The fol-
lowing section discusses the limitations of conventional
library-based synthesis when applied to LUT circuits,
and Section 3 discusses approaches to logic synthesis
that deal specifica.lly with LUT circuits.

2 Library-Based Synthesis

Standard Cells and Mask Programmed Gate Ar-
rays both implement. combinational functions using a
limited set of simple gates. The most successful ap-
proach t,o synthesis for these ASIC technologies has
used library-based technology ma.pping [3]. This ap-
proach traverses the network from the primary inputs
to the primary outputs, and at each node the local
structure of the network is m.adched against a library
of patterns representing the set of available gates. For
each successful match, the cost of the circuit using that
gate is calculated from the cost of the gate, and the cost
of t,he previously constructed circuits implementing the
input,s to the gate. The minimum cost circuit among
all the matches is then retained.

The major obstacle to applying library-based tech-
nology mapping to LUT circuits is the large number
of different functions that a K-input LUT can imple-
ment. The function implemented by a K-input LUT is
determined by the values stored in its 2K memory bits.
Since each bit ca.n independently be either 0 or 1, there
are 2- 7K different Boolean functions of li’ variables. For
values of li’ greater than 3 the library required to rep-

41

without with with
I< permutations permut,ations permutations

and inversions and inversions
2 1G 12 4
3 25G 80 14
4 65536 3984 232

Table 1: Number of Patt,erns for a K-Input LUT

resent a K-input LUT becomes impractically large.
The size of the libra.ry can be reduced by noting

that some pa,tterns are equivalent after a. permutation
of inputs [4]. The inversion of outputs or inputs, which
is trivially accomplished with a LUT, ca.n also produce
equivalent ‘patterns. Table 1 lists the number of differ-
ent patterns, with and without permutations and in-
versions, for IC = 2, 3, and 4. To match a. sub-network
against a pattern in the reduced library it may be nec-
essary to permute or invert the sub-network. Ha.shing
functions have been proposed to simplify the matching
of permuted patterns [5]! but the increased complexity
of pattern matching limits the benefits of the reduced
library.

Another alternative is to use a partial library tuned
to take advantage of the network structure likely to be
produced by technology independent logic optimiza-
tion [6]. The limitation of this approach is that it pre-
cludes some opportunities for optimization of the final
circuit. The following section discusses approaches to
LUT synthesis that exploit the full functiona.lity of a
K-input LUT to obtain improved result,s.

3 LUT-Specific Synthesis

There has been a great, deal of recent, work on lo .ic
synthesis that deals specifically with LUT circuits. G ,

[’ ‘G
71 PI P WI, Pll, 1121, [13], P41, P51,

I

B

181. The
161, P7 , 1

ey to all of these approaches is t le ability
of a K-input LUT to implement ~11 functions of Ii
variables. This complelen.ess simplifies the ma.tching of
a sub-network t.o a LUT. To determine if a sub-network
matches a. K-input, LUT it is not, necessary t,o matc!l
the sub-network a.gainst, a. library of sepamte palterns,
as described in the preceding sect,ion. It is sufficient
to count the number of inputs t’o the sub-network, and
verify that the number of inputs does not exceed the
constraint K.

Technology mapping optimizes the final circuit by
selecting which sub-networks are covered by LUTs. If
the original network includes nodes with more than K
inputs, referred to as infeasible nodes., it may not be
possible to find a circuit of LUTs covermg the network.
In many mapping algorithms, t.o ensure that a circuit
covering the network exists, each infeasible node is de-
composed into a set of feasible nodes, each wit,h at most
I< inputs. In addition, the decomposition of bot,h fea-
sible and infeasible nodes present,s an opportunity to
optimize the final circuit.

The next section discusses the decomposition of in-
feasible nodes, Section 3.2 discusses how decomposition
and covering can be combined to improve the final cir-
cuit, and Section 3.3 describes how covering can exploit

fanout nodes in the original network.

3.1 Decomposition of Infeasible Nodes

The general stra.tegy for the decomposition of infea-
sible nodes is to decompose each infeasible node into
sub-functi’ons that use fewer inputs than the original
infeasible node. Any sub-function that uses no more
t,han K inputs is feasible and is decomposed no further.
Any sub-function that has more tha.t Ii’ inputs is recur-
sively decomposed. Eventually the original infeasible
node is decomposed into a set of feasible nodes. Four
methods tl1a.t have been proposed for the decompo-
sition of infeasible nodes are; disjoint decomposition,
algebraic factorization, AND-OR decomposition, and
Shannon cofactoring.

3.1.1 Disjoid Decomposition

A disjoint deconlposition is based on a pa.rtition of the
inputs to the infeasible node into two disjoint sets re-
ferred to as the bound sef and the free set. One or more
functions of the bound set are extracted from the in-
feasible node, and the infeasible node is replaced by a
function of the outputs of the extracted functions and
the inputs in the free set. The attraction of a disjoint
decomposition is that the number of inputs in the each
of the t.wo sets must be less than the number of inputs
t,o the infeasible node.

Disjoint decompositions can be found by searching
through all possible pa.rtitions of t,he inputs to the in-
feasible node, alld using well known methods such as
residues [19], t.o determine if each ea.& partition leads
t,o a disjoint decomposition. A residue function is ob-
t.ained by repla.cing the inputs in the free set with con-
sta.nt values. If the set of all possible residue functions
for a given partition consists of the constants 0 or 1,
or a single function h of the bound variables, or its in-
verse SE, then the partition is a disjoint decomposition,
with one extracted function. For example, consider the
4-input function f = ab + c&d + 7ib? + Tibz shown in
Figure 4a, and t,he pa,rtition of its inputs into the free
set. (0, b} a.nd the bound set {c? d}. The set of residue
functions for this partition, shown in Figure 4b, con-
sists of the constants 0 and 1, a.nd the function cd and
its inverse (cd). Therefore, this partition leads to the
disjoint, decomposition of the function f, shown in Fig-
ure 4c.

The number of partitions grows exponentially with
number of inputs to the infeasible node, and the search
for disjoint decompositions can become prohibitively
expensive if the infeasible node has a large number of
inputs.

3.1.2 Algebraic Decomposition

Algebmic factoriza.tion techniques developed for tech-
nology independent logic opt,imization can also be used
for the decomposition of infeasible nodes [7]. For ex-
ample, she function CC = UC + bc + bd + ce ca.n be alge-
bra.ica.lly factored into the fa.ctor y = a + b + e, and the
remainder ;c = cv + bd. Since the va.riable b is nsed by

42

ab abed abc abd

a) An infeasible function for A’ = 3

cd b hc,d
0 01 0

b) Residues for t,he partition {CL, 6)) {c, d)

cd

‘r
i

f

c) The disjoint decomposition

Figure 4: Identifying Disjoint Decompositions

both the factor y a.nd the remainder z this is a. not a
disjoint decomposition.

3.1.3 AND-OR Decomposition

Disjoint decompositions a,nd algebraic factorization are
not sufficient. to decompose all infeasible nodes. For ex-
ample, the majority function z = a6 + UC + bc. has no
disjoint decomposition. AND-OR decomposition ca,n
be used to ensure that any infeasible node is clecom-
posed into a set of feasible nodes. The AND
operator is associative and commutat,ive, which I

OR)
a lows

an AND (OR) node to be divided into smaller AND
(OR) nodes using any partition of its inputs. An in-
feasible node is represented as a sub-graph of AND
and OR nodes, each of which is then decomposed us-
ing AND-OR decomposition. For example, the above
3-input majority function can be decomposed into the
2-input functions ‘v = ab, w = ac, x = bc, y = v + w,
and t = y+s.

AND-OR decomposition can also be used to decom-
pose large infea.sible nodes into infeasible nodes that
are small enough t.o ma.ke an exhaust,ive search for dis-
joint decompositions practical [9].

a) Original circuit, 4 LUTs

b cdeg

i q.“-“..-:

b) With Shannon cofactoring, 3 LUTs

Figure 5: Shannon Cofactoring

3.1.4 Shannon Cofactoring

Another form of decomposition that. will always suc-
cessfully decompose an infeasible node is Shannon co-
factoring [‘ZO]. A n infeasible function of n. variables,
f(z1 . . . ~j . x,,), is decomposed into the three func-
tions fX, = f(rl . . l...z,), f- = f(Xl...O...X,)
and f = zjfE, +qfq. The func?on f now depends on
the three inputs ~j, frj, and fq, and can therefore be
implemented by a single K-input LUT for Ir’ >_ 3. The
functions fZ,, and fq, each depend on at most n - 1
variables. If n - 1 equals I< then the completeness of a
K-input L17T ensures that these functions can be im-
plemented by a single LUT. Otherwise, the functions
f Q3 ’ and fq, ca,n be recursively decomposed. For ex-
ample, t,he G input function f = a.bcd+%eg+Z~eg can
be covered by the 4 LUT circuit shown in Figure 5a.
This function can be cofactored ab_out the vqiable_a to
produce the cofact,ors fa = bcd+~@, fx = beg+Efi,
and the 3 LUT circuit shown in Figure 5b.

3.2 Decomposition and Covering

An important observation is that the decomposition
of feasible nodes, as well as infeasible nodes, can lead
to a superior circuit. For example, in the circuit shown
in Figure 6a the AND and OR nodes in the underlying
network are all feasible, and four 5-input LUTs are
needed to cover the network. In Figure Gb the original
4-input OR node has been decomposed into a 2-input
and a S-input OR node a.nd only 2 LUTs are needed
to cover the network.

The AND-OR decomposition of feasible, and infea-

43

4 Original 4-input, OR node, 4 LUTs

b) OR node decomposed, 3 LUTs

Figure G: Decomposition of a Feasible Node

sible nodes, can be combined with a covering algorithm
similar to the library-based approach described in Sec-
tion 2 to optimize the final circuit [lo]. The original
network consists of AND and OR nodes, and is tra-
versed from the primary inputs to the primary outputs.
A circuit implementing each node is constructed from
the circuits implementing its immediate fanin nodes.
This circuit is optimized to minimize the total number
of LUTs, and to minimize the number of inputs used by
its root LUT. This increases the number of unused in-
puts available at the root, LUT, and these may reduce
the number of LUTs required to implement a subse-
quent node.

At each node, the root LUTs of the fanin circuits
are referred to as the funin. L UTs. For example, Figure
7a illustrates the fanin LUTs for the node z. In this
example, the LUTs preceding the fanin LUTs are not
shown, and the functions implemented by the fanin
LUTs are simple AND gates. In general, the fanin
LUTs can implement more complex functions.

At each node’, a tree of LUTs replacing the fanin
LUTs and implementing a decomposition of the node
being mapped is constructed in two st,eps. The first
step selects decompositions, as shown in Figure 7b,
that allow several fanin LUTs to be packed together
into a single LUT. The second step comiects these
LUTs to form the circuit implemeuting the node being
mapped, as shown in Figure 7c. The following sections
describe these two steps.

3.2.1 Decomposition Using Bin Packing

The objective of the first step is the minimization of
the number of LUTs into which the fanin LUTs are
packed. To determine if a group of fanin LUTs can
be packed into a single LUT it is sufficient to count
the total number of inputs used by this group. The

a) Fanin LUTs

r

IV

1
i

: -........... 1

z

b) After bin packing

-I...
1
I ~.~~~~~~~.~.~.,~~ 1

%

I’ . ..-
._ . . .

! i
I

I ._......... I .,............_..._ J ,...
i

7
I i I _..I.

z

c) The final circuit

Figure 7: Decomposition and Covering

completeness of K-input LUTs ensures that any group
of fanin LUTs that together have no more than K in-
puts can be implement,ed by a single LUT. This allows
the minimization of the number of packed LUTs to be
rest.ated and solved as a bin packing problem.

The goal of the bin packing problem is to find the
minimum number of fixed capacity bins into which a
given set of arbitrary sized boxes can be packed. In
this case, the boxes are the fanin LUTs and the bins
are the LUTs into which they are packed. The size
of each box is the number of inputs used by the fanin
LUT and the capacity of each bin is K. In Figure 7a
the boxes have sizes 3, 2, 2, 2, and 2.

Bin packing is a well known combinational optimiza-
t,ion problem, and there exists several effective algo-
rithms for its solution [21]. In particular, the First Fit
Decreasing (FFD) algorithm is optimal for boxes and
bins with integer sizes less than equal to 6 [22]. The

44

FFD algorithm begins with an empty list of bins. The
boxes are sorted by size and then each box, beginning
with the largest, is packed into the first bin in ‘the list
into which it fits. If the box does not fit int.o any bin
then it is packed into a new bin added to t,he end of
the list. In Figure 7b the FFD algorit.hm has packed
the fanin LUTs from Figure 7a into LUTs having filled
capacities of 5, 4, and 2. Note that packing boxes into
bins implies decomposition of the node being mapped.

3.2.2 Completing the Circuit

After the fanin LUTs have been packed into the bins,
the final circuit, shown in Figure 7c, is formed by sort-
ing the bins by filled capacity and then connecting the
output of each bin to an unused input, of one of the
following bins. If no unused inputs are available then
a new LUT is added to the root of circuit. Connect-
ing the bins alters the decomposition of the node being
mapped, however, the completeness of a K-input LUT
ensures that each sub-function can be implemented by
a single LUT. In addition to minimizing the number
of LUTs in the circuit, this approach minimizes the
number of inputs used a.t the root LUT of the circuit.
This is an important consideration, since the root LUT
becomes a box when the following node is mapped.
Smaller boxes ca.n reduce the number of bins required
by the bin packing step and lead to a superior circuit.

3.2.3 Optimality

If the original network is a fallout-free t,ree then t,he
above approach constructs the circuit containing t,he
minimum number of K-input LUTs for values of Ii’ 5
5. A similar approach can map fallout-free trees into
the the minimum depth circuit for values of I< 5 G [14].
The mapping of trees can be used as part of a divide
and conquer strategy to map arbitrary networks by
partitioning the network at, fa.nout nodes int,o a forest
of trees that are then mapped separately.

3.3 Covering of Fanout Nodes

While separate trees can be mapped effectively using
the approach described in the previous section, general
networks containing fanout nodes present additional
challenges and opportunities. The following two sec-
tions describe the opportunities presented by reconver-
gent paths and the replication of logic at fanout nodes,
and Section 3.3.3 describes an a.pproach to LUT tech-
nology mapping that takes adva.ntage of these oppor-
tunities.

3.3.1 Covering Reconvergent Paths

In some networks sepa.rate paths tha.t originate a.t a
fanout node reconverge at a subsequent node. For ex-
ample, in Figure Sa, there are a pair of reconvergent
paths origina.ting at the node a and termina.ting at the
node z. If the reconvergent paths are realized by sepa-
rate LUTs, as in Figure 8a, then each path requires one
LUT input connected to the fanout node. If the recon-
vergent paths are contained within a sub-network that

a) Reconvergent paths covered separately, 3 LUTs

b) Reconvergent paths covered together, 2 LUTs

Figure 8: Covering Reconvergent Paths

has at most K distinct inputs, as shown in Figure 8b,
then the completeness of a K-input LUT ensures that
t,he paths can be covered by a single LUT with only
one input connected to the fanout. node. The reduc-
tion in the number of inputs connected to the fanout
node can lead to a superior circuit, as shown in Figure
8b. However, it is not always advantageous to cover
reconvergent. paths wit,11 a single LUT. For example, in
the circuit shown in Figure 9a the reconvergent paths
originating from the node a are realized within a single
LUT, and 4 LUTs cover the network. This network can
be covered with a circuit of 3 LUTs, as shown in Fig-
ure 9b if the reconvergent paths are covered separately.
The challenge for LUT synthesis is to determine when
reconvergent paths should be covered by a single LUT.

3.3.2 Replication of Logic at Fauout Nodes

The replication of logic at fanout nodes a,lso presents
an opportunity t,o improve the final circuit. For ex-
ample, in t,he 3 LUT circuit shown in Figure 10a the
fanout node L is explicitly implemented as the out-
put of a LUT. Replicat,ing t,he function of this LUT
lea.ds to the 2 LUT circuit shown in Figure lob. The
sub-circuits implementing the nodes y and z in Figure
10a have sufficient unused capacity to include a copy
of the 3-input AND node, and the completeness of a
K-input LUT ensures that the functions incorporating
the copies can be realized. Replication of logic is not

45

a) Reconvergent paths covered together, 4 LTJTs

b) Reconvergent paths covered separately, 3 LUTs

Figure 9: Covering Reconvergent Paths

always beneficial and LUT synthesis must determine
at which fanout nodes replica.tion should occur.

3.3.3 Covering using Edge Visibility 4 Conclusion
In the fina. circuit produced by technology ma.pping
every edge of the original net,work is either driven as
the output of a LUT or implemented within a LUT.
The covering of reconvergent paths and the replication
of logic at fanout nodes can be described by the as-
signment of edge visibility labels [12]. A visible edge
is driven by the output of a LUT, whereas an itlvisi-

ble edge is implemented within a LUT. For example,
the circuit shown in Figure llb covers by the network
shown in Figure lla. In this circuit the invisible edges
(2, y) and (to, y) are represent,ed by curved lines. This
assignment of edge labels implies the replicat,ion of the
3-input OR node, a.nd leads t.o a circuit cont,aining 3
LUTs. In Figure llc the edges (2, z) a.nd (9, z) are in-
visible, and the reconvergent pa.ths origina.ting at, t#he
node w are realized within a single LUT, leading to a
circuit containing 2 LUTs.

The key feature that differentiates the synthesis of
LUT circuits from synthesis for conventional ASIC
technologies is the completeness of the set of functions
that can be realized by a K-input LUT. This complete-
ness simplifies technology mapping by eliminating the
need for a library of separate functions. In addition,
completeness presents opportunities to select decom-
positions that improve the final circuit.

After the decomposition of infeasible nodes, the as-
signment of edge labels can be optimized using a di-
vide and conquer strategy. The network is partitioned
into sub-networks, and within each sub-network, the

To date research in LUT synthesis has focused pri-
marily on technology mapping. The challenge for the
future is to exploit the completeness of LUTs to im-
prove other phases of FPGA synthesis. In particu-
lar, delay penalties incurred by programmable routing
in FPGAs, provide motivation for the investigation of
the combined eff’ect of logic synthesis, placement, and
routing on circuit performance. Another important is-
sue is t,he tradeoff between optimization to fit a design
into the fixed logic and routing resources available on
a given FPGA, and optimization to improve the per-
formance of the final circuit.

Y 2

a) Without replication, 3 LUTs

Y z

b) With replication, 2 LUTs

Figure :lO: Replication of Logic at a Fanout Node

optimal assignment is found by exhaustively search-
ing all possible combinations of edge labels. If the
sub-network containing m edges, t,here are 2”’ different
combinations. For each combination a circuit is formed
by combining the source and destination nodes of invis-
ible edges into one LUT. If any of the resulting LUTs
have more than K inputs, then the combination of edge
labels is re.jected. Otherwise, the combination resulting
in the circuit containing the fewest LUTs is retained.
The computational cost of the search is controlled by
the limit on the number of edges in the sub-network.
In addition, the search can be pruned whenever a com-
bination leading to a LUT with more than IZ inputs is
rejected.

46

w

+

x Y

z

a) Original network

z

b) Edges (cz), (WY) invisible, 3 LUTs

!“’

I
Lit;. i_

i”‘

i

“.i

4+

I
i j ! x

I . I I
.?

c) Edges (zz), (yz) invisible, 2 LUTs

Figure 11: Covering Using Edge Visibility

References

PI

PI

[31

141

[5!

[61

S. D. Brown, R. J. Francis, J. Rose, Z. G. Vranesic, Field-
Programmable gate Arrays, Kluwer Acedemic Publish-
ers, 1992.

R. K. Brayton, G. D. Hachtel, A. Sangiovanni-Vincentelli,
“Multilevel Logic Symhesis,” Proc. of IEEE, Vol. 78, No.
2, Feb. 1990, pp. 264-300.

K. Keutzer, “DAGON: Technology Binding and Local Op-
timization by DAG Matching,” Proc. 24th DAC, June
1987, pp. 341-347.

S. Trimberger, “A Small Complete Mapping Library for
Lookup-Table-Based FPGAs,” 2nd Intl. Workshop on
Field-Programmable Logic and Applications, Aug. 1992.

U. Schlichtmann, F. Brglez, M. Hermanrl, “Characberiza-
tion of Boolean functions for Rapid Matching in EPGA
Technolgy Mapping,” Proc, 29th DAC. Jurle 1992, pp. 374-
379.

R. J. Francis, J. Rose, K. Chung, “Chortle: A Technol-
ogy Mapping Program for Lookup Table-Based Field Pro-

[71

PI

[Ql

PO1

illI

1121

[131

[I41

1161

1171

WI

WI

PO1

1211

WI

grammable Gate Arrays,” Proc. 27th DAC, June 1990, pp.
613-619.

Ft. Murgai, Y, Nishizaki, N. Shenay, R.. K. Brayton,
A. Sangiovanni-Vincent&, “Logic Synthesis for Pro-
grammable Gate Arrays,” Proc. 27th DAC, Jtme 1990, pp.
620-625.

P. Abouzeid, L. Bouchet, K. Sakouti, G. Saucier, P. Sicard,
“Lexicographical Expression of Boolean Function for Mul-
tilevel Synthesis of high Speed Circuits,” Proc. SASHIMI
90, Oct. 1990, pp. 31-39.

D. File, J. C. Yang, F. Mailhot, G. De Micheli, “Tech-
nology Mapping for a Two-Output RAM-based field Pro-
grammable Gate Array,“ Proc. EDAC, Feb. 1991, pp. 534-
538.

R. J. Francis, J. Rose, Z. Vranesic, “Chortle-crf: Fast Tech-
nology Mapping for Lookup Table-Based FPGAs,” Proc.
28th DAC, June 1991 pp. 227-233.

I<. Karplus, “Xmap: a Technology Mapper for Table-
lookup Field-Programmable Gate Arrays,” Proc, 2Sth
DAC, June 1991, pp. 240-243.

N. Woo, “A Heuristic Method for FPGA Technology Map-
ping Based on Edge Visibility.” Proc. 28th DAC, June
1991. pp. 248-251.

R. Murgai, N. Shenoy, R.K. Brayton, A. Sangiovanni-
Vincentelli, “Improved Logic Synthesis Algorithms for Ta-
ble Look Up Architectures,” Proc. ICCAD, Nov. 1991, pp.
564-567.

R. J. Francis, J, Rose, Z. Vranesic, “Technology Mapping
of Lookup Table-Based FPGAs for Performance,” Proc.
ICCAD, Nov. 1991. pp, 568-571.

R. Murgai, N. Shenoy, RI<. Brayton, “Performance Di-
rected Synthesis for Table Look Up Programmable,” Gate
Arrays, Proc. ICCAD, Nov. 1991 pp. 572-575

K. C. Chen, “Logic Minimization of Lookup-Table Based
FPGAs,” 1st Intl Workshop on FPGAs, Feb. 1992, pp. 71-
76,

P. Sawkar, D. Thomas “Area and Delay Mapping for Table-
Look-Up Based Field Progr- able Gate Arrays,” Proc,
29th DAC, June 1992, pp. 368-373.

J. Cong, T. Ding, A. Kahng, P. Trajmar “Graph Based
FPGA Technology Mapping for Delay Optimization,”
Proc. ICCD, Oct. 1992.

E. J. McClusky, Logic Design Principles, Prentice Hall,
1986.

C. E. Shannon, “The Synthesis of Two-Terminal Switching
Circuits,” Bell Syst. Tech. Journal, Vol. 28, 1949, pp. 59-
98.

M. R. Gamy, D. S. Johnson, Computers and In-
tractability, A Guide to the Theory of NP-
Completeness, W. H. Freeman and Co., 1979.

R. J. Francis, Technology Mapping for Lookup Table-
Based FPGAs, Ph.D. Thesis in preparation., University
of Toronto, Department of Electrical Engineermg.

